Arrays of TiO2 Nanowires as Photoelectrochemical Sensors for Hydrazine Detection

نویسندگان

  • Michael Ongaro
  • Michela Signoretto
  • Valentina Trevisan
  • Angela Maria Stortini
  • Igor Medintz
چکیده

Electrodes based on arrays of TiO2 nanowires were prepared by template sol-gel synthesis with the goal of developing a hydrazine photoelectrochemical sensor. Experimental conditions were chosen so that the gelation reaction occurred inside the nanopores of track-etched polycarbonate membranes, with consequent filling with TiO2 nanowires. Different procedures for the removal of the template were examined, in order to obtain arrays of self-standing TiO2 nanowires. The nanowire arrays were bound to fluorine doped tin oxide substrates to produce handy photoelectrodes. The photocurrent recorded with the photoelectrodes in the presence of hydrazine showed significant dependence on the pollutant concentration. The development of a photoelectrochemical sensor for hydrazine detection in water samples, based on this principle, is presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structural and electronic properties of N-doped TiO2 anatase nanoparticles and their effects on the adsorption of Hydrazine (N2H4) molecule: A first-principles study

We have performed a density functional theory investigation on the structural and electronic properties of pristine and Nitrogen-doped TiO2 anatase nanoparticles as the adsorbents for removal and degradation of hydrazine molecules in the environment. We have presented the most stable adsorption configurations and examined the interaction of hydrazine molecule with these doped and undoped nanopa...

متن کامل

Structural and electronic properties of N-doped TiO2 anatase nanoparticles and their effects on the adsorption of Hydrazine (N2H4) molecule: A first-principles study

We have performed a density functional theory investigation on the structural and electronic properties of pristine and Nitrogen-doped TiO2 anatase nanoparticles as the adsorbents for removal and degradation of hydrazine molecules in the environment. We have presented the most stable adsorption configurations and examined the interaction of hydrazine molecule with these doped and undoped nanopa...

متن کامل

C2ta00918h 2418..2425

Highly aligned Cu2O, Cu2O/CuO, Cu2O/CuO/TiO2 and Cu2O/TiO2 nanowires arrays on Au substrates were prepared by controlled air annealing of the electrodeposited Cu nanowires and furthered with dip coating. Photoelectrochemical investigations were carried out to determine their potential as photocathodes for water photo-reduction. The photocurrent of the Cu2O nanowires photocathode was found to be...

متن کامل

Photoelectrochemical aptasensor for the sensitive and selective detection of kanamycin based on Au nanoparticle functionalized self-doped TiO2 nanotube arrays.

In this communication, a new photoelectrochemical aptasensor with Au nanoparticle functionalized self-doped TiO2 nanotube arrays (Au/SD-TiO2 NTs) as the core sensing unit and aptamers as the recognition unit was set up to accomplish the sensitive and selective detection of kanamycin with the lowest detection limit of 0.1 nM.

متن کامل

Photoelectrochemical properties and the detection mechanism of Bi2WO6 nanosheet modified TiO2 nanotube arrays.

Bi2WO6 nanosheet modified TiO2 nanotube arrays were synthesized by an anodization method combined with sequential chemical bath deposition for enhancement of the photoelectrochemical detection performance. The structures, morphologies and elemental compositions of the nanotube arrays were characterized with X-ray diffraction, scanning electron microscopy and X-ray photoelectron spectrometry. Bi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015